The effect of automated alerts on provider ordering behavior in an outpatient setting

PLoS Med. 2005 Sep;2(9):e255. doi: 10.1371/journal.pmed.0020255. Epub 2005 Sep 6.

Abstract

Background: Computerized order entry systems have the potential to prevent medication errors and decrease adverse drug events with the use of clinical-decision support systems presenting alerts to providers. Despite the large volume of medications prescribed in the outpatient setting, few studies have assessed the impact of automated alerts on medication errors related to drug-laboratory interactions in an outpatient primary-care setting.

Methods and findings: A primary-care clinic in an integrated safety net institution was the setting for the study. In collaboration with commercial information technology vendors, rules were developed to address a set of drug-laboratory interactions. All patients seen in the clinic during the study period were eligible for the intervention. As providers ordered medications on a computer, an alert was displayed if a relevant drug-laboratory interaction existed. Comparisons were made between baseline and postintervention time periods. Provider ordering behavior was monitored focusing on the number of medication orders not completed and the number of rule-associated laboratory test orders initiated after alert display. Adverse drug events were assessed by doing a random sample of chart reviews using the Naranjo scoring scale. The rule processed 16,291 times during the study period on all possible medication orders: 7,017 during the pre-intervention period and 9,274 during the postintervention period. During the postintervention period, an alert was displayed for 11.8% (1,093 out of 9,274) of the times the rule processed, with 5.6% for only "missing laboratory values," 6.0% for only "abnormal laboratory values," and 0.2% for both types of alerts. Focusing on 18 high-volume and high-risk medications revealed a significant increase in the percentage of time the provider stopped the ordering process and did not complete the medication order when an alert for an abnormal rule-associated laboratory result was displayed (5.6% vs. 10.9%, p = 0.03, Generalized Estimating Equations test). The provider also increased ordering of the rule-associated laboratory test when an alert was displayed (39% at baseline vs. 51% during post intervention, p < 0.001). There was a non-statistically significant difference towards less "definite" or "probable" adverse drug events defined by Naranjo scoring (10.3% at baseline vs. 4.3% during postintervention, p = 0.23).

Conclusion: Providers will adhere to alerts and will use this information to improve patient care. Specifically, in response to drug-laboratory interaction alerts, providers will significantly increase the ordering of appropriate laboratory tests. There may be a concomitant change in adverse drug events that would require a larger study to confirm. Implementation of rules technology to prevent medication errors could be an effective tool for reducing medication errors in an outpatient setting.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Ambulatory Care Facilities*
  • Automation
  • Clinical Pharmacy Information Systems
  • Colorado
  • Decision Support Systems, Clinical
  • Drug Interactions
  • Female
  • Humans
  • Male
  • Medical Order Entry Systems*
  • Medication Errors / prevention & control
  • Practice Patterns, Physicians'*
  • Reminder Systems*