Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and cancer

Abstract

Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wound healing versus invasive tumour growth.
Figure 2: Cytokine and chemokine balances regulate neoplastic outcome.
Figure 3: Cancer metastasis and chemokine signalling.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Dranoff, G. Tumour immunology: immune recognition and tumor protection. Curr. Opin. Immunol. 14, 161–164 (2002).

    Article  CAS  Google Scholar 

  4. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    Article  CAS  Google Scholar 

  5. Chettibi, S. & Ferguson, M. W. J. in Inflammation: Basic Principles and Clinical Correlates (eds Gallin, J. I. & Snyderman, R.) 865–881 (Lipincott, Williams and Wilkinson, Philadelphia, 1999).

    Google Scholar 

  6. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).

    Article  CAS  Google Scholar 

  8. Moustakas, A., Pardali, K., Gaal, A. & Heldin, C. H. Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunol. Lett. 82, 85–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rous, P. & Kidd, J. Conditional neoplasms and subthreshold neoplastic states: a study of the tar tumors of rabbits. J. Exp. Med. 73, 365–389 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mackenzie, I. C. & Rous, P. The experimental disclosure of latent neoplastic changes in tarred skin. J. Exp. Med. 73, 391–415 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Wahl, L. M. & Kleinman, H. K. Tumor-associated macrophages as targets for cancer therapy. J. Natl Cancer Inst. 90, 1583–1584 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Talmor, M. et al. Generation of large numbers of immature and mature dendritic cells from rat bone marrow cultures. Eur. J. Immunol. 28, 811–817 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Allavena, P. et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol. Rev. 177, 141–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Brigati, C., Noonan, D. M., Albini, A. & Benelli, R. Tumors and inflammatory infiltrates: friends or foes? Clin. Exp. Metastasis 19, 247–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Tsung, K., Dolan, J. P., Tsung, Y. L. & Norton, J. A. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res. 62, 5069–5075 (2002).

    CAS  PubMed  Google Scholar 

  17. Schoppmann, S. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torisu, H. et al. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFα and IL-1α. Int. J. Cancer 85, 182–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ono, M., Torisu, H., Fukushi, J., Nishie, A. & Kuwano, M. Biological implications of macrophage infiltration in human tumor angiogenesis. Cancer Chemother. Pharmacol. 43, S69–S71 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jonjic, N. et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J. Exp. Med. 176, 1165–1174 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nowicki, A. et al. Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int. J. Cancer 65, 112–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. DiCarlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97, 339–345 (2001).

    Article  CAS  Google Scholar 

  24. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Blaser, M. J., Chyou, P. H. & Nomura, A. Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res. 55, 562–565 (1995).

    CAS  PubMed  Google Scholar 

  28. Scholl, S. M. et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl Cancer Inst. 86, 120–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer. Oncology 16, 217–226 (2002).

    PubMed  Google Scholar 

  30. Maeda, H. & Akaike, T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry 63, 854–865 (1998).

    CAS  PubMed  Google Scholar 

  31. Yamanishi, Y. et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc. Natl Acad. Sci. USA 99, 10025–10030 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ernst, P. B. & Gold, B. D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 190, 1375–1382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jensen, U. B., Lowell, S. & Watt, F. M. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labeling and lineage analysis. Development 126, 2409–2418 (1999).

    CAS  PubMed  Google Scholar 

  35. Martins-Green, M., Boudreau, N. & Bissell, M. J. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54, 4334–4341 (1994).

    CAS  PubMed  Google Scholar 

  36. Yoshida, T. et al. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J. Exp. Med. 196, 641–653 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bromberg, J. & Darnell, J. E. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Tebbutt, N. C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nature Med. 8, 1089–1097 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Mantovani, A., Muzio, M., Garlanda, C., Sozzani, S. & Allavena, P. Macrophage control of inflammation: negative pathways of regulation of inflammatory cytokines. Novartis Found. Symp. 234, 120–131 (2001).

    CAS  PubMed  Google Scholar 

  40. Richmond, A. & Thomas, H. Purification of melanoma growth stimulatory activity. J. Cell. Physiol. 129, 375–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Norgauer, J., Metzner, B. & Schraufstatter, I. Expression and growth-promoting function of the IL-8 receptor β in human melanoma cells. J. Immunol. 156, 1132–1137 (1996).

    CAS  PubMed  Google Scholar 

  42. Balentien, E., Mufson, B. E., Shattuck, R. L., Derynck, R. & Richmond, A. Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 6, 1115–1124 (1991).

    CAS  PubMed  Google Scholar 

  43. Owen, J. D. et al. Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int. J. Cancer 73, 94–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Vicari, A. P. & Caux, C. Chemokines in cancer. Cytokine Growth Factor Rev. 13, 143–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Farrow, B. & Evers, B. M. Inflammation and the development of pancreatic cancer. Surg. Oncol. 10, 153–169 (2002).

    Article  PubMed  Google Scholar 

  46. Arenberg, D. A. et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J. Clin. Invest. 102, 465–472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kleeff, J. et al. Detection and localization of Mip-3α/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int. J. Cancer 81, 650–657 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Strieter, R. M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348–27357 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Moore, M. A. The role of chemoattraction in cancer metastases. BioEssays 23, 674–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, Y. J., Borsig, L., Varki, N. M. & Varki, A. P-selectin deficiency attenuates tumor growth and metastasis. Proc. Natl Acad. Sci. USA 95, 9325–9330 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, J et al. Sialyl Lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin. Cancer Res. 62, 4194–4198 (2002).

    CAS  PubMed  Google Scholar 

  54. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M. & Varki, A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA 99, 2193–2198 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qian, F., Hanahan, D. & Weissman, I. L. L-selectin can facilitate metastasis to lymph nodes in a transgenic mouse model of carcinogenesis. Proc. Natl Acad. Sci. USA 98, 3976–3981 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baron, J. A. & Sandler, R. S. Nonsteroidal anti-inflammatory drugs and cancer prevention. Annu. Rev. Med. 51, 511–523 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Rodriguez, L. A. & Huerta-Alvarez, C. Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemiology 12, 88–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Williams, C. S., Mann, M. & DuBois, R. N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908–7916 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Mamytbekova, A., Rezabek, K., Kacerovska, H., Grimova, J. & Svobodova, J. Antimetastatic effect of flurbiprofen and other platelet aggregation inhibitors. Neoplasma 33, 417–421 (1986).

    CAS  PubMed  Google Scholar 

  61. Elder, D. J., Halton, D. E., Hague, A. & Paraskeva, C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin. Cancer Res. 3, 1679–1683 (1997).

    CAS  PubMed  Google Scholar 

  62. Balkwill, F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 13, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Shanahan, J. C. & St. Clair, E. W. Tumor necrosis factor-alpha blockade: a novel therapy for rheumatic disease. Clin. Immunol. 103, 231–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  65. Overall, C. M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).

    Article  CAS  Google Scholar 

  66. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Dalgleish, A. G. & O'Byrne, K. J. Chronic immune activation and inflammation in the pathogenesis of AIDS and cancer. Adv. Cancer Res. 84, 231–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Feiken, E., Romer, J., Eriksen, J. & Lund, L. R. Neutrophils express tumor necrosis factor-alpha during mouse skin wound healing. J. Invest. Dermatol. 105, 120–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Hubner, G. et al. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8, 548–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Chedid, M., Rubin, J. S., Csaky, K. G. & Aaronson, S. A. Regulation of keratinocyte growth factor gene expression by interleukin 1. J. Biol. Chem. 269, 10753–10757 (1994).

    CAS  PubMed  Google Scholar 

  71. Osusky, R., Malik, P. & Ryan, S. J. Retinal pigment epithelium cells promote the maturation of monocytes to macrophages in vitro. Ophthalmic Res. 29, 31–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. DiPietro, L. Wound healing: the role of the macrophage and other immune cells. Shock 4, 233–240 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Fritsch, C., Simon-Assmann, P., Kedinger, M. & Evans, G. S. Cytokines modulate fibroblast phenotype and epithelial-stroma interactions in rat intestine. Gastroenterology 112, 826–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Grutzkau, A. et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell 9, 875–884 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chensue, S. W., Ruth, J. H., Warmington, K., Lincoln, P. & Kunkel, S. L. In vivo regulation of macrophage IL-12 production during type 1 and type 2 cytokine-mediated granuloma formation. J. Immunol. 155, 3546–3551 (1995).

    CAS  PubMed  Google Scholar 

  76. Romer, J. et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nature Med. 2, 287–292 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Institutes of Health, the American Cancer Society, the V Foundation for Cancer Research, the Edward Mallinckrodt Jr Foundation for Medical Research, and the American Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coussens, L., Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002). https://doi.org/10.1038/nature01322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01322

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing