Skip to main content
Log in

Fosfomycin Trometamol: A Review of Its Use as a Single-Dose Oral Treatment for Patients with Acute Lower Urinary Tract Infections and Pregnant Women with Asymptomatic Bacteriuria

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Fosfomycin trometamol (fosfomycin tromethamine) [Monuril®, Monurol®, Monural®] is approved in numerous countries worldwide, mainly for the treatment of uncomplicated urinary tract infections (UTIs). Fosfomycin has good in vitro activity against common uropathogens, such as Escherichia coli (including extended-spectrum β-lactamase-producing E. coli), Proteus mirabilis, Klebsiella pneumoniae and Staphylococcus saprophyticus, and the susceptibility of uropathogens to fosfomycin has remained relatively stable over time. A single oral dose of fosfomycin trometamol 3 g (the approved dosage) achieves high concentrations in urine. Results of recent randomized trials indicate that single-dose fosfomycin trometamol had similar clinical and/or bacteriological efficacy to 3- to 7-day regimens of ciprofloxacin, norfloxacin, cotrimoxazole or nitrofurantoin in women with uncomplicated lower UTIs. In addition, single-dose fosfomycin trometamol had similar bacteriological efficacy to a 5-day course of cefuroxime axetil or a 7-day course of amoxicillin/clavulanic acid in pregnant women with asymptomatic bacteriuria, and similar clinical and/or bacteriological efficacy to a 5-day course of cefuroxime axetil or amoxicillin/clavulanic acid or a 3-day course of ceftibuten in pregnant women with a lower UTI. Single-dose fosfomycin trometamol was generally well tolerated, with gastrointestinal adverse events (e.g. diarrhoea, nausea) reported most commonly. In conclusion, single-dose fosfomycin trometamol is an important option for the first-line empirical treatment of uncomplicated lower UTIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771–6.

    PubMed  Google Scholar 

  2. Hooton TM. Uncomplicated urinary tract infection. N Engl J Med. 2012;366(11):1028–37.

    PubMed  CAS  Google Scholar 

  3. Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.

    PubMed  Google Scholar 

  4. Naber KG, Schito G, Botto H, et al. Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol. 2008;54(5):1164–75.

    PubMed  Google Scholar 

  5. Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235:364–86.

    PubMed  CAS  Google Scholar 

  6. Ferrari V, Bonanomi L, Borgia M. A new fosfomycin derivative with much improved bioavailability by oral route. Chemioterapia Antimicrobica. 1981;4(1):59–63.

    CAS  Google Scholar 

  7. Bergan T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection. 1990;18(Suppl 2):65–9.

    Google Scholar 

  8. Zambon Italia s.r.l. Monuril (fosfomycin trometamol): Italian summary of product characteristics; 2012.

  9. Pierre Fabre Pharma GmbH. Monuril® (fosfomycin trometamol): German summary of product characteristics; 2013.

  10. Zambon S.p.A. Monuril® (fosfomycin trometamol): Irish summary of product characteristics; 2011. http://www.imb.ie/images/uploaded/swedocuments/LicenseSPC_PA1441-002-002_05022013144045.pdf (Accessed 27 Sep 2013).

  11. Zambon Switzerland Ltd. Monurol® (fosfomycin tromethamine): US prescribing information; 2011. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/050717s007lbl.pdf (Accessed 27 Sep 2013).

  12. Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect. 2008;14(Suppl 1):198–202.

    PubMed  CAS  Google Scholar 

  13. Gelfand M, Johnson R. Single-dose fosfomycin tromethamine: evaluation in the treatment of uncomplicated lower urinary tract infection. Adv Ther. 1997;14(2):49–63.

    CAS  Google Scholar 

  14. Salvador T, Portugal M, Sancho L, et al. In vitro activity of fosfomycin against enterobacterial urinary isolates producing extended-spectrum β-lactamase (ESBL) [abstract no. R2611]. 23rd European Congress of Clinical Microbiology; 27–30 Apr 2013; Berlin.

  15. Demir T, Buyukguclu T. Evaluation of in vitro activity of fosfomycin tromethamin against Escherichia coli and Klebsiella species recovered from community- and hospital-acquired uirinary tract infections in Turkey [abstract no. R2572]. 23rd European Congress of Clinical Microbiology; 27–30 Apr 2013; Berlin.

  16. Oliva A, Furustrand Tafin U, Betrisey B, et al. Prevention of in vitro emergence of fosfomycin resistance in methicillin-resistant Staphylococcus aureus (MRSA) [abstract no. P1595 plus poster]. 23rd European Congress of Clinical Microbiology; 27–30 Apr 2013; Berlin.

  17. Ceran N, Adaleti R, Nakipoglu Y, et al. In vitro susceptibility of quinolone-resistant Escherichia coli isolates with and without producing extended-spectrum beta-lactamase to fosfomycin trometamol [abstract plus poster]. 19th European Conference of Clinical Microbiology and Infectious Diseases; 16–19 May 2009; Helsinki.

  18. Karlowsky JA, Adam HJ, Baxter MR, et al. In vitro activity of fosfomycin against urinary tract isolates of Escherichia coli isolated from patients across Canada from 2010 to 2013 [abstract]. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 10–13 Sept 2013; Denver (CO).

  19. Pogue JM, Marchaim D, Kaye D, et al. Revisiting ‘older’ antimicrobials in the era of multidrug resistance. Pharmacotherapy. 2011;31(9):912–21.

    PubMed  Google Scholar 

  20. Karageorgopoulos DE, Wang R, Yu X-H, et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.

    PubMed  CAS  Google Scholar 

  21. de Cueto M, López L, Hernández JR, et al. In vitro activity of fosfomycin against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob Agents Chemother. 2006;50(1):368–70.

    PubMed  Google Scholar 

  22. Barry AL, Pfaller MA, Fuchs PC, et al. Interpretive criteria and quality control parameters for determining bacterial susceptibility to fosfomycin tromethamine. Eur J Clin Microbiol Infect Dis. 1993;12(5):352–6.

    PubMed  CAS  Google Scholar 

  23. Liu H-Y, Lin H-C, Lin Y-C, et al. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect. 2011;44(5):364–8.

    PubMed  CAS  Google Scholar 

  24. Biondo CM, Rocha JL, Tuon FF. Fosfomycin in vitro resistance of Escherichia coli from the community. Br J Infect Dis. 2011;15(1):96.

    CAS  Google Scholar 

  25. Araj GF, Jaber FA. In vitro activity of fosfomycin and other antimicrobials against uropathogenic Escherichia coli and Klebsiella pneumoniae at a tertiary care center in Lebanon. Leban Med J. 2012;60(3):142–7.

    Google Scholar 

  26. Maraki S, Samonis G, Rafailidis PI, et al. Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob Agents Chemother. 2009;53(10):4508–10.

    PubMed  CAS  Google Scholar 

  27. Kahlmeter G, Poulsen HO. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO.SENS study revisited. Int J Antimicrob Agents. 2012;39(1):45–51.

    PubMed  CAS  Google Scholar 

  28. Butcu M, Akcay SS, Inan AS, et al. In vitro susceptibility of enterococci strains isolated from urine samples to fosfomycin and other antibiotics. J Infect Chemother. 2011;17(4):575–8.

    PubMed  CAS  Google Scholar 

  29. Hutley EJ, Chand MA, Hounsome G, et al. Fosfomycin: an oral agent for urinary infection caused by extended spectrum beta-lactamase producing organisms. J Infect. 2010;60(4):308–9.

    PubMed  CAS  Google Scholar 

  30. Pullukçu H, Aydemir S, Işikgöz Taşbakan I, et al. Is there a rise in resistance rates to fosfomycin and other commonly used antibiotics in Escherichia coli-mediated urinary tract infections? A perspective for 2004–2011. Turk J Med Sci. 2013;43(4):537–41.

    Google Scholar 

  31. Demir T, Buyukguclu T. Evaluation of the in vitro activity of fosfomycin tromethamine against Gram-negative bacterial strains recovered from community- and hospital-acquired urinary tract infections in Turkey. Int J Infect Dis. 2013. doi:10.1016/j.ijid.2013.04.005.

  32. Gobernado M, Valdés L, Alós JI, et al. Antimicrobial susceptibility of clinical Escherichia coli isolates from uncomplicated cystitis in women over a 1-year period in Spain. Rev Esp Quimioter. 2007;20(1):68–76.

    PubMed  CAS  Google Scholar 

  33. Ko KS, Suh JY, Peck KR, et al. In vitro activity of fosfomycin against ciprofloxacin-resistant or extended-spectrum β-lactamase-producing Escherichia coli isolated from urine and blood. Diagn Microbiol Infect Dis. 2007;58(1):111–5.

    PubMed  CAS  Google Scholar 

  34. Bonfiglio G, Mattina R, Lanzafame A, et al. Fosfomycin tromethamine in uncomplicated urinary tract infections: a clinical study. Chemotherapy. 2005;51(2–3):162–6.

    PubMed  CAS  Google Scholar 

  35. García García MI, MuñozBellido JL, GarcíaRodríguez JA. In vitro susceptibility of community-acquired urinary tract pathogens to commonly used antimicrobial agents in Spain: a comparative multicenter study (2002–2004). J Chemother. 2007;19(3):263–70.

    PubMed  Google Scholar 

  36. Knottnerus BJ, Nys S, ter Riet G, et al. Fosfomycin tromethamine as second agent for the treatment of acute, uncomplicated urinary tract infections in adult female patients in The Netherlands? J Antimicrob Chemother. 2008;62(2):356–9.

    PubMed  CAS  Google Scholar 

  37. Gismondo MR, Romeo MA, Lo Bue AM, et al. Microbiological basis for the use of fosfomycin trometamol as single-dose therapy for simple cystitis. Chemioterapia. 1986;5(4):278–82.

    PubMed  CAS  Google Scholar 

  38. Mazzei T, Cassetta MI, Fallani S, et al. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int J Antimicrob Agents. 2006;28(Suppl 1):35–41.

    Google Scholar 

  39. Fadda G, Cattani P, Rossi A, et al. At atlas of photographs illustrating the effects of fosfomycin trometamol on bacterial adhesiveness; 2006. http://www.gimmoc.it/editoria/quaderni/quaderni_2006/q3-2006.pdf (Accessed 23 Jul 2013).

  40. Carlone NA, Borsotto M, Cuffini AM, et al. Effect of fosfomycin trometamol on bacterial adhesion in comparison with other chemotherapeutic agents. Eur Urol. 1987;13(Suppl 1):86–91.

    PubMed  CAS  Google Scholar 

  41. Kumon H. Management of biofilm infections in the urinary tract. World J Surg. 2000;24(10):1193–6.

    PubMed  CAS  Google Scholar 

  42. Marchese A, Gualco L, Debbia EA, et al. In vitro activity of fosfomycin against Gram-negative urinary pathogens and the biological cost of fosfomycin resistance. Int J Antimicrob Agents. 2003;22(Suppl 2):53–9.

    PubMed  Google Scholar 

  43. Cai Y, Fan Y, Wang R, et al. Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J Antimicrob Chemother. 2009;64(3):563–6.

    PubMed  CAS  Google Scholar 

  44. Marchese A, Bozzolasco M, Gualco L, et al. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents. 2003;22(Suppl 2):95–100.

    PubMed  Google Scholar 

  45. Mikuniya T, Kato Y, Ida T, et al. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother. 2007;13(5):285–90.

    PubMed  CAS  Google Scholar 

  46. Nilsson AI, Berg OG, Aspevall O, et al. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother. 2003;47(9):2850–8.

    PubMed  CAS  Google Scholar 

  47. Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother. 1991;35(5):791–5.

    PubMed  Google Scholar 

  48. Arca P, Hardisson C, Suárez JE. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother. 1990;34(5):844–8.

    PubMed  CAS  Google Scholar 

  49. Li Pira G, Pruzzo C, Schito GC. Monuril and modification of pathogenicity traits in resistant microorganisms. Eur Urol. 1987;13 Suppl 1:92–7.

    Google Scholar 

  50. Andreu A, Planells I. Etiology of community-acquired lower urinary infections and antimicrobial resistance of Escherichia coli: a national surveillance study [in Spanish]. Med Clin (Barc). 2008;130(13):481–6.

    Google Scholar 

  51. Junquera S, Loza y Fernando Baquero E. Changes in the antimicrobial susceptibility of Escherichia coli isolates from nosocomial versus community-acquired urinary tract infections [in Spanish]. Enferm Infecc Microbiol Clin. 2005;23(4):197–201.

    PubMed  Google Scholar 

  52. Lorente Garín JA, Placer Santos J, Salvadó Costa M, et al. Antibiotic resistance transformation in community-acquired urinary infections [in Spanish]. Rev Clin Esp. 2005;205(6):259–64.

    PubMed  Google Scholar 

  53. Rodríguez López FC, Franco-Álvarez de Luna F, Gordillo Urbano RM, et al. Microorganisms isolated from outpatient urine samples and antimicrobial susceptibility over a 12-year period [in Spanish]. Rev Esp Quimioter. 2005;18(2):159–67.

    PubMed  Google Scholar 

  54. Arzouni JP, Bouilloux JP, de Moüy D, et al. Urinary tract infections in women aged 15 to 65 years in open-care practice: monitoring of Escherichia coli sensitivity to fosfomycin treatment on the basis of the previous history [in French]. Med Mal Infect. 2000;30:699–702.

    Google Scholar 

  55. Honderlick P, Cahen P, Gravisse J, et al. Uncomplicated urinary tract infections, what about fosfomycin and nitrofurantoin in 2006? [in French]. Pathol Biol (Paris). 2006;54(8–9):462–6.

    CAS  Google Scholar 

  56. Oteo J, Orden B, Bautista V, et al. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J Antimicrob Chemother. 2009;64(4):712–7.

    PubMed  CAS  Google Scholar 

  57. Rodríguez-Avial C, Rodríguez-Avial I, Hernández E, et al. Increasing prevalence of fosfomycin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates (2005–2009–2011) [in Spanish]. Rev Esp Quimiot. 2013;26(1):43–6.

    Google Scholar 

  58. Oteo J, Bautista V, Lara N, et al. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. J Antimicrob Chemother. 2010;65(11):2459–63.

    PubMed  CAS  Google Scholar 

  59. Ungheri D, Albini E, Belluco G. In-vitro susceptibility of quinolone-resistant clinical isolates of Escherichia coli to fosfomycin trometamol. J Chemother. 2002;14(3):237–40.

    PubMed  CAS  Google Scholar 

  60. Falagas ME, Maraki S, Karageorgopoulos DE, et al. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents. 2010;35(3):240–3.

    PubMed  CAS  Google Scholar 

  61. Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10(1):43–50.

    PubMed  CAS  Google Scholar 

  62. Neuner EA, Sekeres J, Hall GS, et al. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother. 2012;56(11):5744–8.

    PubMed  CAS  Google Scholar 

  63. Pogue JM, Marchaim D, Abreu-Lanfranco O, et al. Fosfomycin activity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. J Antibiot (Tokyo). 2013. doi:10.1038/ja.2013.56.

    Google Scholar 

  64. Bergan T, Thorsteinsson SB, Albini E. Pharmacokinetic profile of fosfomycin trometamol. Chemotherapy (Basel). 1993;39:297–301.

    CAS  Google Scholar 

  65. Scaglione F, Cicchetti F, Demartini G, et al. Fosfomycin distribution in the lower urinary tract after administration of fosfomycin trometamol salt. Int J Clin Pharmacol Res. 1994;14(3):107–9.

    PubMed  CAS  Google Scholar 

  66. Borghi CM, Laveneziana D, Riva A, et al. Concentrazioni nel siero e nel tessuto prostatico di fosfomicina con fosfomicina-trometamolo, nuovo derivato della fosfomicina con elevata biodisponibilità per somministazione orale. Farmaci Terapia. 1986;3(3):216–20.

    Google Scholar 

  67. Janknegt R, Hooymans PM, Fabius GTJ, et al. Urinary concentrations of fosfomycin after a single 3 g dose of fosfomycin to elderly nursing-home patients. Pharm World Sci. 1994;16:149–53.

    PubMed  CAS  Google Scholar 

  68. Bergogne-Bérézin E, Muller-Serieys C, Joly-Guillou ML, et al. Trometamol-fosfomycin (Monuril) bioavailability and food–drug interaction. Eur Urol. 1987;13(Suppl 1):64–8.

    PubMed  Google Scholar 

  69. Segre G, Bianchi E, Cataldi A, et al. Pharmacokinetic profile of fosfomycin trometamol (Monuril). Eur Urol. 1987;13(Suppl 1):56–63.

    PubMed  CAS  Google Scholar 

  70. Bergan T, Mastropaolo G, Di Mario F, et al. Pharmacokinetics of fosfomycin and influence of cimetidine and metoclopramide on the bioavailability of fosfomycin trometamol. In: Neu HC, Williams JD, editors. New trends in urinary tract infections. Basel: Karger; 1988. p. 157–66.

    Google Scholar 

  71. Wilson P, Williams JD, Rolandi E. Comparative pharmacokinetics of fosfomycin trometamol, sodium fosfomycin and calcium fosfomycin in humans. In: Neu HC, Williams JD, editors. New trends in urinary tract infections. Basel: Karger; 1988. p. 136–42.

    Google Scholar 

  72. Bergan T. Pharmacokinetics of fosfomycin. Rev Contemp Pharmacother. 1995;6(2):55–62.

    CAS  Google Scholar 

  73. Kirby WMM. Pharmacokinetics of fosfomycin. Chemotherapy (Basel). 1977;23(Suppl 1):141–51.

    Google Scholar 

  74. Naber KG, Thomas P, Fünfstück R. Fosfomycin trometamol in patients with renal insufficiency and in the elderly. Int Arab J Antimicrob Agents. 2012;2(13). doi:10.3823/707.

  75. Ceran N, Mert D, Kocdogan FY, et al. A randomized comparative study of single-dose fosfomycin and 5-day ciprofloxacin in female patients with uncomplicated lower urinary tract infections. J Infect Chemother. 2010;16(6):424–30.

    PubMed  CAS  Google Scholar 

  76. Rafalskiy V, Khodnevitch L, Malev I. Randomized clinical trial of short-course norfloxacin vs single dose fosfomycin for uncomplicated UTI in region with 10% resistance level of uropathogenic E. coli to fluoroquinolone [abstract no. P1784]. 19th European Congress of Clinical Microbiology and Infectious Diseases; 16–19 May 2009; Helsinki.

  77. Gupta K, Hooton TM, Stamm WE. Isolation of fluoroquinolone-resistant rectal Escherichia coli after treatment of acute uncomplicated cystitis. J Antimicrob Chemother. 2005;56(1):243–6.

    PubMed  CAS  Google Scholar 

  78. Stapleton A, Roberts P, Cox M. Pilot study of fosfomycin trometamol compared with trimethoprim- sulfamethoxazole for acute uncomplicated cystitis in women [abstract no. 305]. 49th Annual Meeting of the Infectious Diseases Society of America; 20–23 Oct 2011; Boston (MA).

  79. Bayrak O, Çimentepe E, İnegöl I, et al. Is single-dose fosfomycin trometamol a good alternative for asymptomatic bacteriuria in the second trimester of pregnancy? Int Urogynecol J. 2007;18(5):525–9.

    Google Scholar 

  80. Estebanez A, Pascual R, Gil V, et al. Fosfomycin in a single dose versus a 7-day course of amoxicillin-clavulanate for the treatment of asymptomatic bacteriuria during pregnancy. Eur J Clin Microbiol Infect Dis. 2009;28(12):1457–64.

    PubMed  CAS  Google Scholar 

  81. Usta TA, Dogan O, Ates U, et al. Comparison of single-dose and multiple-dose antibiotics for lower urinary tract infection in pregnancy. Int J Gynaecol Obstet. 2011;114(3):229–33.

    PubMed  CAS  Google Scholar 

  82. Krcmery S, Hromec J, Demesova D. Treatment of lower urinary tract infection in pregnancy. Int J Antimicrob Agents. 2001;17(4):279–82.

    PubMed  CAS  Google Scholar 

  83. Harvard Davis R, O’Dowd TC, Holmes W, et al. A comparative double-blind randomised study of single dose fosfomycin trometamol with trimethoprim in the treatment of urinary tract infections in general practice. Chemotherapy. 1990;36 Suppl 1:34–6.

    Google Scholar 

  84. De Cecco L, Ragni N. Urinary tract infections in pregnancy: Monuril single-dose treatment versus traditional therapy. Eur Urol. 1987;13(Suppl 1):108–13.

    PubMed  Google Scholar 

  85. Crocchiolo P. Single-dose fosfomycin trometamol versus multiple-dose cotrimoxazole in the treatment of lower urinary tract infections in general practice. Chemotherapy. 1990;36(Suppl 1):37–40.

    PubMed  Google Scholar 

  86. de Jong Z, Pontonnier F, Plante P. Single-dose fosfomycin trometamol (Monuril) versus multiple-dose norfloxacin: results of a multicenter study in females with uncomplicated lower urinary tract infections. Urol Int. 1991;46(4):344–8.

    PubMed  Google Scholar 

  87. Ferraro G, Ambrosi G, Bucci L, et al. Fosfomycin trometamol versus norfloxacin in the treatment of uncomplicated lower urinary tract infections of the elderly. Chemotherapy. 1990;36(Suppl 1):46–9.

    PubMed  Google Scholar 

  88. Jardin A. A general practitioner multicenter study: fosfomycin trometamol single dose versus pipemidic acid multiple dose. Infection. 1990;18(Suppl 2):89–93.

    Google Scholar 

  89. Richaud C. Single dose treatment of lower urinary tract infection in women: results of a trial with fosfomycin trometamol versus pefloxacin [in French]. Med Mal Infect. 1995;25:154–9.

    Google Scholar 

  90. Reynaert J, Van Eyck D, Vandepitte J. Single dose fosfomycin trometamol versus multiple dose norfloxacin over three days for uncomplicated UTI in general practice. Infection. 1990;18(Suppl 2):S77–9.

    PubMed  Google Scholar 

  91. Van Pienbroek E, Hermans J, Kaptein AA, et al. Fosfomycin trometamol in a single dose versus seven days nitrofurantoin in the treatment of acute uncomplicated urinary tract infections in women. Pharm World Sci. 1993;15(6):257–62.

    PubMed  Google Scholar 

  92. Minassian MA, Lewis DA, Chattopadhyay D, et al. A comparison between single-dose fosfomycin trometamol (Monuril®) and a 5-day course of trimethoprim in the treatment of uncomplicated lower urinary tract infection in women. Int J Antimicrob Agents. 1998;10(1):39–47.

    PubMed  CAS  Google Scholar 

  93. Stein GE. Comparison of single-dose fosfomycin and a 7-day course of nitrofurantoin in female patients with uncomplicated urinary tract infection. Clin Ther. 1999;21(11):1864–72.

    PubMed  CAS  Google Scholar 

  94. de Andrade J, Lopes CMC, da Silva DC, et al. Fosfomycin trometamol single-dose in the treatment of uncomplicated urinary tract infections in cardiac pregnant or non pregnant women: a controlled study [in Portuguese]. J Bras Ginec. 1994;104(9):345–51.

    Google Scholar 

  95. Moroni M. Monuril in lower uncomplicated urinary tract infections in adults. Eur Urol. 1987;13(Suppl. 1):101–4.

    PubMed  Google Scholar 

  96. Elhanan G, Tabenkin H, Yahalom R, et al. Single-dose fosfomycin trometamol versus 5-day cephalexin regimen for treatment of uncomplicated lower urinary tract infections in women. Antimicrob Agents Chemother. 1994;38(11):2612–4.

    PubMed  CAS  Google Scholar 

  97. Boerema JBJ, Willems FTC. Fosfomycin trometamol in a single dose versus norfloxacin for seven days in the treatment of uncomplicated urinary infections in general practice. Infection. 1990;18(Suppl 2):S80–8.

    PubMed  Google Scholar 

  98. Cooper J, Raeburn A, Brumfitt W, et al. Single dose and conventional treatment for acute bacterial and non-bacterial dysuria and frequency in general practice. Infection. 1990;18(2):65–9.

    PubMed  CAS  Google Scholar 

  99. Neu HC. Fosfomycin trometamol versus amoxycillin: single-dose multicenter study of urinary tract infections. Chemotherapy. 1990;36(Suppl 1):19–23.

    PubMed  Google Scholar 

  100. Zinner S. Fosfomycin trometamol versus pipemidic acid in the treatment of bacteriuria in pregnancy. Chemotherapy. 1990;36(Suppl 1):50–2.

    PubMed  Google Scholar 

  101. Palmieri G, Palmieri R, Ambrosi G, et al. A new single-dose antibiotic in urinary tract infection tretament in elderly patients. In: Neu HC, Williams JD, editors. New trends in urinary tract infections. Basel: Karger; 1988. p. 322–4.

    Google Scholar 

  102. Falagas ME, Vouloumanou EK, Togias AG, et al. Fosfomycin versus other antibiotics for the treatment of cystitis: a meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2010;65(9):1862–77.

    PubMed  CAS  Google Scholar 

  103. Bjerklund Johansen TE, Botto H, Cek M, et al. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. In: Naber KG, Schaeffer AJ, Heyns CF, editors. Urogenital infections Arnhem: European Association of Urology—International Consultation on Urological Diseases; 2010. p. 980–91.

  104. AFSSAPS (Agence française de sécurité sanitaire des produits de santé). AFSSAPS practice recommendations for diagnosis and antibiotic therapy of adult community urinary tract infections [in French]. Med Mal Infect. 2008;38 Suppl 3:S203–52.

  105. Denes E, Prouzergue J, Ducroix-Roubertou S, et al. Antibiotic prescription by general practitioners for urinary tract infections in outpatients. Eur J Clin Microbiol Infect Dis. 2012;31(11):3079–83.

    PubMed  CAS  Google Scholar 

  106. Slekovec C, Leroy J, Vernaz-Hegi N, et al. Impact of a region wide antimicrobial stewardship guideline on urinary tract infection prescription patterns. Int J Clin Pharm. 2012;34(2):325–9.

    PubMed  Google Scholar 

  107. Giamarellou H, Poulakou G. Multidrug-resistant Gram-negative infections: what are the treatment options? Drugs. 2009;69(14):1879–901.

    PubMed  CAS  Google Scholar 

  108. Schito GC. Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents. 2003;22(Suppl 2):79–83.

    PubMed  Google Scholar 

  109. Naber KG, Wullt B, Wagenlehner FME. Antibiotic treatment of uncomplicated urinary tract infection in premenopausal women. Int J Antimicrob Agents. 2011;38(Suppl):21–35.

    PubMed  CAS  Google Scholar 

  110. Nicolle LE. Asymptomatic bacteriuria: to treat or not to treat. In: Naber KG, Schaeffer AJ, Heyns CF, editors. Urogenital Infections. Arnhem: European Association of Urology—International Consultation on Urological Diseases; 2010. p. 303–13.

    Google Scholar 

  111. Bailey RR. Single-dose antibacterial treatment for bacteriuria in pregnancy. Drugs. 1984;27(2):183–6.

    PubMed  CAS  Google Scholar 

  112. Norwich Pharmaceuticals Inc. Furadantin® (nitrofurantoin) oral suspension: US prescribing information; 2008. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/009175s037lbl.pdf (Accessed 23 Jul 2013).

  113. GlaxoSmithKline. Ceftin® tablets (cefuroxime axetil tablets) and Cefitin® for oral suspension (cefuroxime axetil powder for oral suspension): US prescribing information; 2007. http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050605s042lbl.pdf (Accessed 23 Jul 2013).

  114. Palou J, Angulo JC, Ramón de Fata F. Randomized comparative study for the assessment of a new therapeutic schedule of fosfomycin trometamol in postmenopausal women with uncomplicated lower urinary tract infection [in Spanish]. Actas Urol Esp. 2013;37(3):147–55.

    PubMed  CAS  Google Scholar 

  115. Senol S, Tasbakan M, Pullukcu H, et al. Carbapenem versus fosfomycin tromethanol in the treatment of extended-spectrum beta-lactamase-producing Escherichia coli-related complicated lower urinary tract infection. J Chemother. 2010;22(5):355–7.

    PubMed  CAS  Google Scholar 

  116. Pullukcu H, Tasbakan M, Sipahi OR, et al. Fosfomycin in the treatment of extended spectrum beta-lactamase-producing Escherichia coli-related lower urinary tract infections. Int J Antimicrob Agents. 2007;29(1):62–5.

    PubMed  CAS  Google Scholar 

  117. Rudenko N, Dorofeyev A. Prevention of recurrent lower urinary tract infections by long-term administration of fosfomycin trometamol: double blind, randomized, parallel group, placebo controlled study. Arzneimittelforschung. 2005;55(7):420–7.

    PubMed  CAS  Google Scholar 

  118. Możdżan M, Ruxer J, Siejka A, et al. The efficacy of chronic therapy of recurrent lower urinary tract infections with fosfomycin and nitrofurantoin in type 2 diabetic patients. Adv Clin Exp Med. 2007;16(6):777–84.

    Google Scholar 

  119. Ongün S, Aslan G, Avkan-Oguz V. The effectiveness of single-dose fosfomycin as antimicrobial prophylaxis for patients undergoing transrectal ultrasound-guided biopsy of the prostate. Urol Int. 2012;89(4):439–44.

    PubMed  Google Scholar 

  120. Baert L, Billiet I, Vandepitte J. Prophylactic chemotherapy with fosfomycin trometamol versus placebo during transurethral prostatic resection. Infection. 1990;18(Suppl 2):S103–6.

    PubMed  Google Scholar 

  121. Periti P, Novelli A, Reali EF, et al. Prophylactic chemotherapy with fosfomycin trometamol salt during transurethral prostatic surgery: a controlled multicenter clinical trial. Eur Urol. 1987;13(Suppl 1):122–31.

    PubMed  Google Scholar 

  122. di Silverio F, Ferrone G, Carati L. Prophylactic chemotherapy with fosfomycin trometamol during transurethral surgery and urological manoeuvres: results of a multicentre study. Infection. 1990;18(Suppl 2):S98–102.

    PubMed  Google Scholar 

  123. Di Silverio F, Cruciani E, Ferrone G, et al. Evaluation of fosfomycin trometamol in the prevention of urinary tract infection after ESWL and ureteropyeloscopy. In: Neu HC, Williams JD, editors. New trends in urinary tract infections. Basel: Karger; 1988. p. 329–32.

    Google Scholar 

  124. Billiet I, Baert L, Vandepitte J. Prophylactic chemotherapy with fosfomycin trometamol versus placebo during transurethral prostatic resection. Infection. 1990;18(Suppl 2):S103–6.

    PubMed  Google Scholar 

  125. Novelli A, Reali EF, Lamanna S, et al. Chemoprevention using fosfomycin trometamol in transurethral resection of the prostate: multicenter controlled clinical study [in Italian]. Ann Ist Super Sanita. 1987;23(4):809–12.

    PubMed  CAS  Google Scholar 

  126. Caramalli S, Amprimo MC, Cavalli G, et al. Effect and pharmacokinetics of netilmicin given as bolus intramuscular administration: an open comparative trial versus amikacin and fosfomycin in elderly patients affected by urinary tract infections. Int J Clin Pharmacol Res. 1991;11(2):55–65.

    PubMed  CAS  Google Scholar 

  127. Careddu P, Borzani M, Varotto F, et al. Trometamol salt of fosfomycin (Monuril): preliminary pharmacokinetic and clinical experience in the treatment of urinary tract infections in children. Eur Urol. 1987;13(Suppl 1):114–8.

    PubMed  Google Scholar 

  128. Varese LA. Trometamol salt of fosfomycin versus netilmicin: randomized multicenter study in children’s lower urinary tract infections. Eur Urol. 1987;13(Suppl 1):119–21.

    PubMed  Google Scholar 

  129. Principi N, Corda R, Bassetti D, et al. Fosfomycin trometamol versus netilmicin in children’s lower urinary tract infections. Chemotherapy. 1990;36(Suppl 1):41–5.

    PubMed  Google Scholar 

  130. Careddu P, Borzani M, Scotti L, et al. Treatment of lower urinary tract infections in children: single dose fosfomycin trometamol versus pipemidic acid. Chemioterapia. 1987;6(4):290–4.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on this article. Changes resulting from comments received were made by the author on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Keating.

Additional information

The manuscript was reviewed by: R. Colgan, University of Maryland, Department of Family and Community Medicine, Baltimore, MD, USA; A. P. MacGowan, Department of Microbiology, Bristol Centre for Antimicrobial Research & Evaluation, Southmead Health Services NHS Trust, Bristol, UK; K. G. Naber, Technical University Munich, Munich, Germany; O. R. Sipahi, Department of Infectious Diseases and Clinical Microbiology, Ege University Faculty of Medicine, Bornova Izmir, Turkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, G.M. Fosfomycin Trometamol: A Review of Its Use as a Single-Dose Oral Treatment for Patients with Acute Lower Urinary Tract Infections and Pregnant Women with Asymptomatic Bacteriuria. Drugs 73, 1951–1966 (2013). https://doi.org/10.1007/s40265-013-0143-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0143-y

Keywords

Navigation