Skip to main content

Advertisement

Log in

Genotoxic effect of Goeckerman regimen of psoriasis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Goeckerman regimen (GR) of psoriasis includes daily dermal application of crude coal tar (CCT) and dermal exposure to UV-A and UV-B radiation. Observed group consisted of 23 patients with psoriasis treated by GR. Therapeutic ointment contained 5% of CCT. The level of psoriasis area and severity index was significantly decreased after GR (P < 0.001) and confirms high efficiency of GR. High levels of selected metabolites of pyrene and phenanthrene indicated high level of dermal penetration. We found significantly increased urinary mutagenicity in samples collected in the middle and in the end of GR (TA98+S9, P < 0.01; YG1041-S9, P < 0.001; YG1041+S9, P < 0.001). Significant increasing of chromosomal aberrations in peripheral lymphocytes (CA) in blood samples collected in the end of GR (P < 0.001) and consecutive decreasing of CA in 78th day after the end of GR has been observed. Almost all results indicated that the patients could be endangered by a peak genotoxic exposure. Nevertheless, the genotoxic effect does not seem to be long lasting. Despite conflicting results from cancer epidemiological studies, it is evident that single GR can contribute to the total load of environmental mutagens in a group of treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AHEM. Acta Hygienica et Epidemiologica et Microbiologica (2003) Standardized operating approaches for biological monitoring of genotoxic effects of environmental factors. AHEM 3/2003. National Institute of Health, Praha

  2. Boffeta P, Gridley G, Lindelöf B (2001) Cancer risk in a population-based cohort of patients hospitalized for psoriasis in Sweden. J Invest Dermatol 117:1531–1537

    Article  Google Scholar 

  3. Borska L, Fiala Z, Smejkalova J, Hamakova M, Kremlacek J (2004) Possible genotoxic risk of combined exposure to pharmaceutical coal tar and UV-B radiation. Cent Eur J Public Health Suppl 12:S14–S15

    Google Scholar 

  4. Borska L, Fiala Z, Krejsek J, Andrys C, Vokurkova D, Hamakova K, Kremlacek J, Ettler K (2006) Selected immunological changes in patients with Goeckerman’s therapy TNF-alpha, sE-selectin, sP-selectin, sICAM-1 and IL-8. Physiol Res [Epub ahead of print]

  5. Cameron AL, Kirby B, Fei W, Griffiths CE (2002) Natural killer and natural killer-T cells in psoriasis. Arch Dermatol Res 294(8):363–369

    PubMed  CAS  Google Scholar 

  6. Danielsen AG, Heidenheim M, Wulf HC (2001) Crude coal tar every day versus every other day for plaque psoriasis. Acta Derm Venerol 81:221–222

    Article  PubMed  CAS  Google Scholar 

  7. de Rie MA, Goedkoop AY, Bos JD (2004) Overview of psoriasis. Dermatol Therapy 17:341–349

    Article  Google Scholar 

  8. Feldman SR (2005) Where has Goeckerman treatment gone? J Dermatolog Treat 16(2):73–74

    Article  PubMed  Google Scholar 

  9. Ferreira M, Buchet JP, Burrion JB, Moro J, Cupers L, Delavignette JP, Jacques J, Lauwerys R (1994) Determination of urinary thioethers, d-glucaric acid and mutagenicity after exposure to PAH assessed by air monitoring and measurement of 1-hydroxypyrene in urine. Int Arch Occup Env Health 65:329–338

    Article  CAS  Google Scholar 

  10. Fiala Z, Borská L, Hamakova K, Andrýs C, Smejkalova J, Vokurkova D, Kremlaček J (2004) Biochemical, immunological and cytogenetical changes after dermal exposure to polycyclic aromatic hydrocarbons and UV-B radiation. Toxicol Appl Pharm 197:185

    Google Scholar 

  11. Gmeier G, Krassnig C, Schmidt E, Tausch H (1998) Fast screening method for the profile analysis of polycyclic aromatic hydrocarbon metabolites in urine using derivatization—solid-phase micro extraction. J Chromatogr B 705:132–138

    Article  Google Scholar 

  12. Gündel J, Mannschreck C, Büttner K, Ewers U, Angerer J (1996) Urinary levels of 1-hydroxypyrene, 1-, 2-, 3-, and 4-hydroxyphenanthrene in females Libiny in an industrial area of Germany. Arch Environ Contam Toxicol 31:585–590

    Article  PubMed  Google Scholar 

  13. Hannuksela-Svahn A, Pukkala E, Läärä E, Poikolainen K, Karvonen J (2000) Psoriasis, its treatment, and cancer in a cohort of Finish patients. J Invest Dermatol 114:587–590

    Article  PubMed  CAS  Google Scholar 

  14. Hatjian BA, Edwards JW, Harrison J, Williams FM, Blain PG (1995) Ambient, biological, and biogical effect monitoring of exposure to PAHs. Toxicol Lett 77:271–279

    Article  PubMed  CAS  Google Scholar 

  15. Hewlett Packard (1994) Water analysis. Organic micropollutants. Chapter 4: Polycyclic aromatic hydrocarbons

  16. Huang W, Grainger J, Patterson DG, Turner WE, Caudill SP, Needham LL, Pirkle JL, Sampson EJ (2004) Comparison of 1-hydroxypyrene exposure in the US population with that in occupational exposure studies. Int Arch Occup Environ Health 77:491–498

    Article  PubMed  CAS  Google Scholar 

  17. IARC (1987) Monographs on the evaluation carcinogenic risk of chemicals to humans, vols 1–42. Overall evaluations of carcinogenicity. An updating IARC Monographs, Suppl 7, IARC, Lyon

  18. IARC (1992) Monographs on the evaluation of carcinogenic risks to humans, vol 55. Solar and ultraviolet radiation. An updating IARC Monograph. IARC, Lyon

  19. Jenner N, Campbell J, Plunkett A, Marks R (2002) Cost of psoriasis: a study on the morbidity and financial effects of having psoriasis in Australia. Austral J Dermatol 45:255–261

    Article  Google Scholar 

  20. Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45:3–13

    PubMed  CAS  Google Scholar 

  21. Lee E, Koo J (2005) Modern modified ‘ultra’ Goeckerman therapy: a PASI assessment of a very effective therapy for psoriasis resistant to both prebiologic and biologic therapies. J Dermatolog Treat 16(2):102–107

    Article  PubMed  CAS  Google Scholar 

  22. Mollerup S, Berge G, Baera R, Skaug V, Hewer A, Phillips DH, Stangeland L, Haugen A (2006) Sex differences in risk of lung cancer: expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J Cancer 119(4):741–744

    Article  PubMed  CAS  Google Scholar 

  23. Novosad J, Fiala Z, Borská L, Krejsek J (2002) Immunosuppressive effect of polycyclic aromatic hydrocarbons by induction of apoptosis of pre-B lymphocytes of bone marrow. Acta Med (Hradec Kralove) 45(4):123–128

    CAS  Google Scholar 

  24. Rihs HP, Pesch B, Kappler M, Rabstein S, Rosbach B, Angerer J, Scherenberg M, Adams A, Wilhelm M, Seidel A, Brüning T (2005) Occupational exposure to polycyclic aromatic hydrocarbons in Germany industries: association between exogenous exposure and urinary metabolites and its modulation by enzyme polymorphisms. Toxicol Lett 157:241–255

    Article  PubMed  CAS  Google Scholar 

  25. Seiwert M, Becker K, Kaus S, Krause C, Schulz C, Seifert B (1998) German Environmemtal Survey 1998 (GerES III). PAH in the urine of adults and children. Federal Environmental Agency (Umweltbundesamt), Berlin, Germany

  26. Serdar B, Waidyanatha S, Zheng Y, Rappaport SM (2003) Simultaneous determination of urinary 1- and 2-naphthols, 3- and 9- phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers 8(2):93–109

    Article  PubMed  CAS  Google Scholar 

  27. Scherer G, Doolittle DJ, Ruppert T, Meger-Kossien I, Riedel K, Tricker AR, Adlkofer F (1996) Urinary mutagenicity and thioethers in nonsmokers. Mutat Res 368:195–204

    Article  PubMed  CAS  Google Scholar 

  28. Thami GP, Sarkar R (2002) Coal tar: past, present and future. Clin Exp Dermatol 27:99–103

    Article  PubMed  Google Scholar 

  29. Van de Kerkhof PC, Vissers WH (2004) Established treatment of psoriasis. Curr Drug Targets Inflamm Allergy 3:145–156

    Article  PubMed  Google Scholar 

  30. Veenhuis RT, van Horsen J, Bos RP, Anzion RBM, van der Valk PGM (2002) Highly increased urinary 1-hydroxypyrene excretion rate in patients with atopic dermatitis treated with topical coal tar. Arch Dermatol Res 294:168–171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Research project IGA No. NR 8154-3 and by the Research project No. 00179906, Ministry of Health, Czech Republic. The authors acknowledge the language assistance of Ms. Isobel Black and Ms. Dana Fialova.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zdenek Fiala or Lenka Borska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiala, Z., Borska, L., Pastorkova, A. et al. Genotoxic effect of Goeckerman regimen of psoriasis. Arch Dermatol Res 298, 243–251 (2006). https://doi.org/10.1007/s00403-006-0691-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0691-z

Keywords

Navigation