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Abstract
Background: Up to half of patients with dementia may not receive a formal diagnosis, limiting

access to appropriate services. It is hypothesised that it may be possible to identify undiagnosed

dementia from a profile of symptoms recorded in routine clinical practice.

Aim: The aim of this study is to develop a machine learning-based model that could be used in

general practice to detect dementia from routinely collected NHS data. The model would be a

useful tool for identifying people who may be living with dementia but have not been formally

diagnosed.

Design & setting: The study involved a case-control design and analysis of primary care data

routinely collected over a 2-year period. Dementia diagnosed during the study period was

compared to no diagnosis of dementia during the same period using pseudonymised routinely

collected primary care clinical data.

Method: Routinely collected Read-encoded data were obtained from 18 consenting GP surgeries

across Devon, for 26 483 patients aged >65 years. The authors determined Read codes assigned to

patients that may contribute to dementia risk. These codes were used as features to train a

machine-learning classification model to identify patients that may have underlying dementia.

Results: The model obtained sensitivity and specificity values of 84.47% and 86.67%, respectively.

Conclusion: The results show that routinely collected primary care data may be used to identify

undiagnosed dementia. The methodology is promising and, if successfully developed and

deployed, may help to increase dementia diagnosis in primary care.
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How this fits in
Improving dementia care through increased and timely diagnosis is a priority, yet almost half of

those living with dementia do not receive a timely diagnosis. In England, primary care practitioners

are encouraged and given incentives to recognise and record dementia in an effort to improve diag-

nosis rates. However, dementia diagnosis rates in primary care are still low, and many remain undi-

agnosed or are diagnosed late, when opportunities for therapy and improving quality of life have

passed. This model can automatically identify, from routine data, those patients most at risk of living

with undiagnosed dementia. This should help to increase the dementia identification rate in primary

care.

Introduction
Dementia is a progressive neurodegenerative brain disease that results in the death of nerve cells. It

severely impairs cognitive function, usually memory initially, resulting in significant disability.1 About

856 700 people are living with dementia in the UK, at an annual cost of care of £26 billion.2 As life

expectancy increases, the number of people in the UK affected by dementia is estimated to be >2

million by 2030, with costs tripling.3 A timely diagnosis of dementia is important for ensuring that

patients are offered the right treatment and access to services,4,5 as well as empowering them to

better plan their future, and allow them to access clinical trials. However, dementia diagnosis is com-

plex because it has many types (such as Alzheimer’s disease and vascular dementia),6 and the clinical

features can overlap with other conditions such as depression. A review of NHS practice suggests

that up to 50% of patients may not receive a formal diagnosis of dementia,7 which is usually pro-

vided by specialist secondary care clinics. GPs have at their disposal several dementia screening

tools, such as the Six-item Cognitive Impairment Test, to inform referral to secondary care of

patients who present to them. However, patients and carers may ignore memory problems and

delay seeking medical help for up to 2.5 years.8 Therefore, tools that could automatically identify

patients with possible dementia, to facilitate targeted screening, could potentially be very useful

and help improve diagnosis rates.

There is strong epidemiological evidence that a number of cardiovascular and lifestyle factors

such as hypertension; hypercholesterolaemia; diabetes; obesity; stroke; atrial fibrillation; smoking;

and reduced cognitive, physical, or social activities can predict the risk of dementia in later life.9

Although work has been done to combine some of these factors to calculate long-term risk scores

for dementia,10–12 research to predict short-term risk or undiagnosed dementia is limited. Attempts

have been made to use primary care data to predict dementia over an 18–54 month interval,13 but

these are aimed at finding an alternative to the use of biomarkers to predict dementia rather than

addressing the issue of under-diagnosis. Work has also been done in the development of dementia

risk scores.10,11 However, unlike QRISK214 which is used to calculate cardiovascular risk scores, cur-

rent dementia risk models do not identify patients who may have undiagnosed dementia 15 and they

require collection of additional data from patients, which limits their use in general practice.12

Barnes et al16 developed a Dementia Screening Indicator (DSI) using data based on dementia pre-

dictors that were identified from four different cohort studies. However, some predictive factors

used in developing the DSI model (for example, activities of daily living and mobility) are not rou-

tinely collected in primary care.

A machine-learning tool could be used to help identify people likely to have undiagnosed demen-

tia in general practice, for clinical assessment and targeted referral on to memory services, thereby

facilitating equality of access to dementia diagnosis and services. This is a priority in the UK,17 with

likely associated cost savings.

Method
Figure 1 provides an overview of the methodology that was used to identify those that may have

undiagnosed dementia from Read-encoded data routinely collected in primary care. Read codes are

a thesaurus of clinical terms that are used to summarise clinical and administrative data for general

practice in the UK.17 All GP practices that participated in this study used the Read coding system.
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The method may be summarised as follows:

. A list of Read codes associated with dementia was compiled and used to identify patients with
dementia. This was necessary because there was no indicator in the dataset that specifically
marked patients diagnosed with dementia.

. The dataset was explored to identify other Read codes that were assigned to the patients with
dementia.

. A subset of Read codes was then determined that have a significant association with patients
diagnosed with dementia. The subset of Read codes represents features which may be viewed
as Read-encoded risk factors for dementia.

. Data were extracted based on the subset of Read codes identified Prince et al.3

Figure 1. Overview of methodology.
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. The extracted dataset was then used to develop a supervised machine learning-based model
that is able to identify patients with dementia.

. The performance of the model to identify patients with dementia was tested and evaluated.

. The model’s prediction of the dementia status of patients by GP practices was then validated.

Data source
NHS Devon (now part of Northern, Eastern and Western Devon Clinical Commissioning Group) had

access to data from primary care used in a project to identify patients at risk of unplanned admis-

sions, so that GPs could take preventive action. The primary care data included demographics, long-

term conditions, and consultations of patients from 105 participating GP practices from 2010–2012.

There were 106 GP practices in NHS Devon; only one did not participate, and that was a small prac-

tice that serves a homeless community. It was thus not representative of a standard practice. The

large amount of clinical data in the NHS Devon dataset makes it an excellent resource for relevant

research on risk factors for dementia and the investigation of undiagnosed cases on a part of the

population of the South West of the UK. The practices involved in the project were approached and

appropriate approvals were sought. Each practice was sent an email inviting them to consent to their

pseudonymised data to be used in this study. Eighteen of 105 practices consented to take part. The

data were extracted from the practices that consented.

Summary of data and participating GP practices
Data collected in the period 1 June 2010–1 June 2012 were used. Only data from patients aged >65

years were included. The dataset contains Read codes assigned to patients for each visit to their GP.

Patients NHS number was pseudonymised for data protection. There are 26 843 patients and 15 469

Read codes, of which 4301 were diagnosis codes, 5028 process of care codes, and 6101 medication

codes. The Read codes are sorted into diagnoses, process of care, and medication chapters.18 Diag-

nosis codes record diagnosis, medication codes record any medication that may have been pre-

scribed, and process of care codes record history, symptoms, examinations, tests, and so on.

Figure 2 shows the percentage of the study population that was contributed by each participating

GP practice. There is an even sex distribution with 46% male and 54% female patients. In terms of

spatial distribution, based solely on the GP surgery that an event was recorded, the majority of the

events originated from a small number5 of surgeries across Devon.

Of the 18 GP surgeries that participated, there were four city practices, eight town practices, and

six smaller rural practices. The four city practices covered one third of the population of patients in

the study.

Identifying patients with dementia
Patients with dementia were identified in the GP dataset using a list of Read codes associated with

dementia. The list was compiled from Quality and Outcomes Framework (QoF) codes for demen-

tia,19 QoF dementia subset,20 other sources,21 and by searching the Clinical Terminology Browser,

under the guidance of a consultant old-age psychiatrist. Patients who had any of the Read codes in

the list assigned to them any time during the study period were assumed to have been diagnosed

with dementia.

Identifying profile of Read codes associated with dementia
The hypothesis of this study is that it should be possible to identify undiagnosed dementia from a

profile of Read codes assigned to patients in primary care. The Read codes represent risk factors

(such as high blood pressure), symptoms (such as forgetfulness), and behaviours (such as not attend-

ing hospital appointments), which are routinely collected in primary care. The authors initially

explored the dataset to identify patients with dementia, and identified other Read codes that were

also assigned to patients with dementia, apart from those in the dementia list. The features used in

the classification are binary and represent the presence or absence of the corresponding Read code

in the patient’s data. This disregards how many times the patient may have attended the clinic in

relation to a specific problem. Sophisticated feature selection and classification techniques22 were

used to select the smallest subset of Read codes which capture the complex patterns of Read codes

that have a significant association with dementia. Feature selection is often used in machine-learning
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to select a subset of features that may maximally improve classification performance23 and reduce

the potential for overfitting.24 The feature selection process allowed the identification of a profile of

Read codes that may be used to classify dementia and healthy patients with clinically acceptable

sensitivity and sensitivity values of at least 80%. Specifically, machine learning-based feature selec-

tion algorithms were used to identify a subset of k codes that can adequately represent all the other

n codes assigned to patients with dementia while discarding (n-k) codes.25 This is based on evaluat-

ing the diagnostic value of each individual Read code in classifying patients with dementia and

healthy patients.26

Developing a machine learning-based model to identify dementia
Machine-learning was used to derive a classifier to model the different features that characterise

patients with dementia so that the derived classifier can be used to detect possible underlying cases

of dementia. The Read codes that were selected in the feature selection process were used as fea-

tures for developing a dementia classification model. The number of times patients were assigned a

given code was ignored. This was necessary to ensure that the number of times a patient visits their

GP does not influence the determination of their dementia status, thereby making the classifier

more generic. The Read codes that were used to determine patients with dementia were removed

from the set of features that were used in the classification, as they are related to dementia.

A dataset was extracted from the primary care data around the selected features. The dataset

was used to train a machine-learning classifier to learn to discriminate between patients with demen-

tia and healthy patients. The extracted dataset had 850 patients with dementia and 24 858 healthy

patients, which represents an imbalance in the size of the two groups. Without any additional proce-

dure, the machine-learning classifiers would be biased towards learning to recognise healthy

patients. To compensate for this bias and to emphasise the importance of also learning to recognise

patients with dementia, a cost-sensitive classifier25 was used. This methodology is based on setting

the cost of misclassifying patients with dementia much higher than that of misclassifying healthy

patients.

By identifying a profile of Read codes associated with dementia, the authors were able to

develop a model that may be able to discriminate between patients with dementia and healthy

patients. The University of Waikato (WEKA) open-source toolbox25 for developing machine learning-

based models for class prediction was used. Support vector machine (SVM),27 naı̈ve Bayes (NB),28

random forest (RF),29 and logistic regression (LR)30 algorithms were used with default settings.

These algorithms represent the most widely used algorithms in practice.

Figure 2. Percentage of study population contributed by each participating GP practice.
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SVM is a supervised learning method that is widely used for pattern recognition and dementia

diagnosis problems31–33 due to its ability to learn from data. SVM maps input training data into a

higher dimension and separate binary-labelled training data by a decision boundary that is maximally

distant from the two classes. It builds a function from the training data so that the function can clas-

sify unseen data. SVM is relatively easy to train and it can handle high dimensional data. WEKA

implemented Platt’s sequential minimal optimisation algorithm for training SVM classifiers.34

The NB classifier is a supervised machine-learning technique that provides a simple approach to

represent, use, and learn probabilistic knowledge to classify unseen data. It is based on Bayes theo-

rem and the theorem of total probability. By assuming all features are mutually independent,9 NB

calculates probabilities of belonging to a class by counting the frequency and combination of fea-

tures’ values in a given training dataset. It is a fast classifier which is not sensitive to redundant fea-

tures and has found application in dementia diagnosis.35,36 For more information, refer to WEKA’s

implementation of NB.28

RF is an ensemble learning algorithm-based classification method. It uses training data to con-

struct decision trees (DTs), and classify unseen data by combining individual tree decisions. The key

feature of RF is the creation of trees that have small randomised differences in characteristics, which

improves generalisation performance. RF is particularly suited to high-dimensional data. It has been

increasingly used in dementia detection and classification problems.37,38 For more information, refer

to WEKA’s implementation of RF.29

LR is a simple machine-learning approach which is widely used as a starting point in binary classifi-

cation problems and has been used for early diagnosis of dementia.39 LR is a statistical technique

that predicts the probability of class memberships given a set of feature values.40 For more informa-

tion, refer to WEKA’s implementation of the LR classifier.30

A k-fold cross validation training and testing strategy was implemented,41 which is widely used in

machine-learning. It is simple to use and universally accepted because it avoids overfitting.42 Using

this method, the dataset was automatically divided into ten sub-datasets. One was left out of the

training process and used for testing, while the remaining sub-datasets were used to train the

machine-learning classifier. This was repeated ten times, with a different sub-dataset left out each

time, until all sub-datasets were used for training and for testing.

Four criteria were used to assess the performance of the machine-learning classification: sensitiv-

ity, specificity, area under the curve (AUC), and accuracy. These performance metrics are generally

used in data mining methods for dementia prediction.43 After this initial evaluation, the model was

run on the entire primary care dataset to determine how many patients could be identified as possi-

bly living with undiagnosed dementia.

Results
The authors initially identified a profile of possible risk factors from which it may be possible to iden-

tify undiagnosed dementia. An analysis was conducted of the distribution of the complete set of

Read codes within people diagnosed with dementia and healthy control patients. The findings

guided the inclusion of further Read codes in the analyses and selection of other risk factors (further

information available from the authors on request).

It is desirable in machine-learning to have the same number of example data in each class. When

the number of examples in each class is significantly different, balance can be achieved by using only

a subset of the class with the most examples.44 In this study, there are 850 patients with dementia

and 24 858 healthy patients in the dataset, which represents an imbalance of 1:29 in the size of the

two classes. This imbalance was reduced by extracting 2213 randomly selected healthy patients. This

subset, together with the 850 patients with dementia, was used to develop classification models to

discriminate between patients with dementia and healthy patients. SVM, NB, RF and LR classifiers

were investigated.

The performance of the classifiers was assessed, using 10-fold cross-validation, in terms of sensi-

tivity, specificity, accuracy, and AUC. The results showed that the NB classifier gave the best perfor-

mance with a sensitivity and specificity of 84.47% and 86.67%, respectively (see Table 1). The

receiver operating characteristic is shown in Figure 3. With 2213 healthy patients, about 161 may be

expected to have dementia (given a prevalence of 7.3%). The model identified 295 patients as possi-

bly having dementia who had not received a diagnosis.
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The performance of the classification model suggests that it can be used at GP practices to facili-

tate targeted screening by identifying those at risk of undiagnosed dementia. As a proof of concept,

the developed model was used to predict undiagnosed dementia in the entire dataset that was

shared with the study’s authors by GP practices. Figure 4 shows the number of people that this tool

identified as living with undiagnosed dementia, based on various thresholds of confidence.

Validation
To validate these findings, a proportion of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) were selected, as classified by the model. The model’s prediction of

the dementia status of these patients was sent for validation to GP practices that contributed to the

primary care dataset. The validation study was undertaken in July 2015.

Table 1. Naı̈ve Bayes classification results

Performance measure Result

Sensitivity, % 84.47

Specificity, % 86.67

Correctly classified patients, % 86.06

AUC 0.869

AUC = area under curve.

Figure 3. ROC results of the classification.
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Using a lot quality assurance sampling method,45 a sample size of 24 each for TP, TN, FP, and FN

(making a total sample size of n = 96) was calculated to provide sufficient power to allow calculation

of overall accuracy levels with a confidence interval of �±10%. TP patients are those correctly pre-

dicted by the model as having dementia. TN patients have been correctly predicted as not having

dementia. FP patients have been predicted by the model as having dementia, but have not had a

dementia diagnosis; this group is of particular interest because they might be living with undiag-

nosed dementia. FN patients have been wrongly predicted by the model as healthy. All 18 GP prac-

tices were contacted by telephone or email; 11 responded and agreed to help with the validation.

The 11 that responded contributed 21 352 of the 26 843 (79.54%) patients whose data were used in

this study. For each of the selected patients, administrative staff was asked to confirm: whether the

patient had a diagnosis of dementia; the type of dementia; whether the patient was prescribed

dementia medication; date of dementia diagnosis; and dementia codes used. For each of the

selected patients, the information received was used to check whether the model’s prediction of a

patient’s dementia status was correct. Not all GP practices responded, thus altogether, 19 TP, 14

TN, 21 FP, and 13 FN cases were evaluated by 11 GP practices.

The model predicted 19 subjects to fall in the TP category. Fifteen of these were confirmed in the

data to be TP subjects, and the remaining four were confirmed to have dementia by GP surgeries

during the validation. However, the validation data showed that these patients were on dementia

medication, illustrating the need for more robust validation. The validation showed that the model

has a positive dementia prediction accuracy of 78.94%. A negative dementia prediction by the

model was confirmed to be the case for 13/14 TN patients. One patient that the model predicted as

healthy was confirmed as a dementia patient diagnosed with Alzheimer’s disease. However, the

patient was diagnosed with dementia in January 2013, which is outside the study window (June

2010–May 2012).

Five out of 21 patients that the model predicted to have undiagnosed dementia (FP) were con-

firmed as having dementia by the validation. Three of these were diagnosed with dementia after the

study window. This is significant, because they did not receive formal dementia diagnosis within the

study window, and were therefore considered not to have dementia. Yet, the tool identified them as

potentially living with undiagnosed dementia. Two were diagnosed with dementia during the study

window, but were not marked as patients with dementia because they were not assigned a code in

Figure 4. Number of potentially undiagnosed dementia cases.
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the dementia codes list. Yet, they were picked up by the model as patients with dementia because

they have similar profile to patients with dementia. The three patients that were predicted to have

undiagnosed dementia were diagnosed with dementia 2–30 months after the study period. The

remaining 16 patients that the model predicted to have undiagnosed dementia were

confirmed to be healthy by the GP practices. These patients were predicted as having dementia by

the model because they have similar profiles to patients with dementia, and may therefore benefit

from further dementia screening.

The group that was wrongly predicted by the model to have no dementia (that is, the FN group)

is not of much interest because these are patients that were known to have been misclassified. The

validation was just to confirm that they were patients that had a diagnosis of dementia to start with.

Ten patients that the model wrongly predicted as healthy patients were confirmed by GP practices.

The model wrongly predicted two patients as healthy, because they were assigned a code from the

dementia codes list. One patient had no dementia and was not assigned any code in the dementia

codes list.

Discussion

Summary
It is generally accepted that a timely diagnosis of dementia has a significant influence on the care,

treatment, and quality of life of people who suffer from dementia. Yet dementia diagnosis rates

remain low, with up to half of those living with dementia not diagnosed, even in countries with

advanced medical care systems.46 It has been suggested that screening at GP practices does not

result in an increase in diagnosis rates,47 and that routine screening is generally not recommended

because its efficacy has not been validated.48 A cost-effective tool that can be used by GP practices

to identify patients likely to be living with dementia, based only on routine data would be extremely

useful. Such a tool could be used to select high risk patients who could be invited for targeted

screening.

The present authors have developed a machine-learning based classification model that detected

undiagnosed dementia, from routinely collected Read-encoded medical history, with sensitivity and

specificity values of 84.47% and 86.67%, respectively. The good performance of the model suggests

that it could be used at GP practices to facilitate targeted screening to identify those at high risk of

having undiagnosed dementia. The model is accurate in identifying undiagnosed dementia, but it

also highlights the need for extending the list of dementia codes that are used to identify patients

with dementia. The tool has potential incidental advantages; for example, it could be useful in pro-

viding greater awareness and understanding of risk factors associated with dementia.

Most diagnoses of dementia, and certainly prescription of dementia medications, would take

place either in secondary care or within specialist community memory services. This information

would normally be fed back to the GP. For a small proportion of patients managed entirely within

primary care, there will be a diagnostic error rate. It is this diagnosis error that a part of this study

aims to address, in order to identify to GPs which patients on their caseload have dementia, of which

the GP remains unaware

The model needs to be validated before implementation in clinical practice. The authors con-

ducted a limited validation study, whereby a proportion of TP, TF, FP, and FN diagnoses (as classi-

fied by the model) were selected from a number of participating GP practices. However, the model

requires further and more detailed validation, ideally using large and well-defined clinical cohorts,

before it can be used in clinical practice. This would involve the use of datasets, ideally covering dif-

ferent regions of the UK (for example, the Clinical Practice Research Datalink [CPRD] dataset)49 to

demonstrate robustness and to show that the model can be used in different regions of the UK.

Strengths and limitations
This is the first demonstration of a machine-learning approach to identifying dementia using rou-

tinely collected NHS data. However, this work has some limitations. A list of Read codes based on

diagnosis and medication was compiled that represented a diagnosis of dementia. Although guided

by clinical input, it is acknowledged that the list that was used to identify patients with dementia

may not be exhaustive. It is possible that not all of the patients with dementia in the dataset were
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identified. It is therefore possible that the ’gold standard’ (who in the dataset had dementia and

who was healthy) that was used to train the machine-learning classifiers to recognise dementia may

not be 100% accurate. This may impact the classification performance.

The dataset was explored to identify other codes assigned to patients with dementia. It was these

codes that were used to develop the model. The codes did not also include age, sex, or patient

demographics. The inclusion of relevant patient information may improve classification performance

further. Additionally, the number of dementia cases in the dataset was relatively small (n = 850) com-

pared to the total number of patients (n = 26 843). Although this was compensated for by using a

cost-sensitive classifier, increasing the number of known dementia cases in the training data may

improve performance. The accuracy of all modelling scenarios rests on the quality of the underlying

data, which is a potential limitation of this study. To determine the accuracy of coding in the dataset,

it would have been ideal to assess the accuracy of diagnostic coding in a sample from each quadrant

of the confusion matrix. The resource implications of this made it impractical, but this should be con-

sidered in any further evaluation of the model. This tool was based on routinely collected data from

26 843 patients across 18 surgeries in Devon, UK. These data may not be representative of the

dementia population of the UK, across patients of different backgrounds and demographics. Data

used to develop the model was collected across Devon, and it is therefore possible that it may be

specific to the South West of UK. Data collected from across the UK may include a more representa-

tive set of Read codes routinely assigned to patients with dementia. Using these data in the devel-

opment of the model may improve its performance, and possibly make the model more generic for

use in primary care across UK.

Comparison with existing literature
The challenge of improving dementia diagnosis rates provides an opportunity for collaborative

research between clinicians and machine learning-based data analysts to develop intelligent data-

driven dementia diagnostic models. The use of machine-learning techniques has been used for diag-

nostic dementia modelling. Pazzani et al50 evaluated the potential of machine-learning systems to

learn rules for assessing patients based on historical clinical data that was taken from diverse prob-

lems, from screening for dementia to the risk of mental retardation. They found that in order for

such models to be accepted, they must be consistent with existing medical knowledge. A study by

Silva et al43 showed that machine-learning classifiers such as neural network (NN) and SVM classifiers

can improve dementia classification accuracy. They developed machine-learning classification mod-

els based on 10 neuropsychological tests that are commonly used in dementia diagnosis. Their

results showed the utility of machine-learning models in the automatic diagnoses of dementia. Wil-

liams et al51 used neuropsychological and demographic data to train back-propagation NN, SVM,

NB, and DT machine-learning techniques to predict Clinical Dementia Rating scores for very mild

dementia, MCI, and clinical diagnoses. Williams et al showed that machine-learning based modelling

can be used to automate clinical diagnoses of dementia. However, they used neuropsychological

and demographic data, while the present authors analysed the full set of historical clinical data of a

study cohort that was collected over a 2-year period. The machine-learning classification tool in the

present study also obtained higher sensitivity and specificity values. Weakely et al49 conducted a

research study to determine the fewest number of clinical measures that are required for classifying

patients with dementia and healthy elderly patients. Their results showed that as few as 2–9 variables

may be enough to obtain a clinically useful classification model.

Implications for research
With the expected growth in dementia prevalence, the number of specialist memory clinics may be

insufficient to meet the expected demand for diagnosis.52 Furthermore, although current ’gold

standards’ in dementia diagnosis may be effective, they involve the use of expensive neuroimaging

(for example, positron emission tomography scans) and time-consuming neuropsychological assess-

ments which is not ideal for routine screening of dementia. There are several potential research

areas that may lead to enhanced performance of this tool. Firstly, healthcare professionals in differ-

ent regions within the UK may use different Read codes for dementia. A study to identify dementia

codes used across the UK will improve the accuracy of identifying those with clinically-diagnosed

dementia. Secondly, the tool was based on data collected by 18 GP surgeries in Devon. Using a
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more nationally representative clinical dataset, such as the CPRD primary care dataset53 and the

English Longitudinal Study of Ageing dataset, may lead to a tool that could be used across the UK

to routinely identify undiagnosed dementia. As future work, the present authors will evaluate the

tool more extensively with other datasets, and validate it more extensively at GP practices.
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